Scientific and Technical Reports

Nickmann and Thuro: Engineering geological investigations into the characterization of weak rocks320
Experience gained over a number of construction projects has highlighted the need to be able to define the border between solid rocks staying unchanged for a long time and weak rocks showing degradation over a period of months to years. Investigations have shown however, that there is no suitable method currently available to formally calculate this delineation. Nickmann (2007) has developed a methodology for the determination and classification of the rock durability working with a modified wetting-drying-test combined with a crystallisation test. Using this test, not only weak rocks can be separated into five classes of durability, but also hard rocks can be discerned from weak rocks. The distinction between weak and hard rocks depends on its structural strength G, a summary parameter describing the composition (grain size distribution, content of clay minerals susceptible to water, cementation) and porosity characteristics. More recent investigations have shown that the structural strength depends on the rock fabric and can be reduced by microscopic inhomogeneities like bedding planes or small fissures, because at such joints the bond strength of the rock is weakened and the water conductivity increases. Weathering also reduces the structural strength by weakening latent fissures or deteriorating the cementation which increases the pore volume. The investigations showed, that already a slightly weathering of stage V2-V3 after ISRM transforms a formerly strong rock into a weak rock.

Holzhauser and Thuro: Determining the shear strength of soft rock326
The shear strength of weak rock is commonly determined by methods used in soil or rock mechanics. Most of these methods, however, do not sufficiently take into account the specific rock properties of soft rock. When the test environment is not adequately adjusted, this may lead to incorrect or vague test results. In order to provide recommendations for conducting shear tests, several tests using direct shear were run for pelitic soft rock (clay-siltstone) under varying test conditions. By comparing the relevant testing results and analyzing results from existing shearing tests drawn from literature testing requirements for the examined rock types were defined.

Hofmann and Poisel: Geotechnical process modeling of a rapid earth flow shown by the example of Gschliefgraben, Austria331
A rock slide on to the clayey-silty-sandy-pebbly masses in the Gschliefgraben (Upper Austria province, Lake Traunsee) having occurred in 2006, together with the humid autumn of 2007, triggered a mudslide comprising a volume up to 4 million m³ and moving with a maximum displacement velocity of 4.7 m/day during the winter of 2007-2008. The possible damage was estimated up to 60 million € due to the possible destruction of houses and of a road to a settlement with intense tourism. The movement front ran ahead in the creek bed. Therefore it was assumed that water played an important role. Inclinometer measurements showed that a less permeable layer was sliding on a thin, more permeable layer. During the last centuries mudslides had already pushed farms into the lake, as reported by chronicles. Thus the inhabitants of 46 houses had to be evacuated for safety reasons. They could return to their homes after displacement velocities had decreased. It was decided to prevent soaking of water into the uppermost, less permeable layer by transversal drainages in the upper slope, to lower the pore water pressures by trenches filled with blocky material, to pump water out of the more permeable layer by well drillings above the houses in order to create a stable block below the houses and to remove material thrust over the stable blocks in order to avoid damage to the houses. These mitigation measures costing 10 million € led to a deceleration of the process to displacement velocities of some cm/month up to now. The houses and the road have not been damaged.
Ingenieurgeologische Untersuchungen zur Charakterisierung veränderlich fester Gesteine

Dr. Marion Nickmann, Prof. Dr. Kurosch Thuro, Lehrstuhl für Ingenieurgeologie, Technische Universität München

Daher stellt die vorliegende Arbeit neue Möglichkeiten zur Abgrenzung und Klassifizierung veränderlich fester Gesteine vor und beleuchtet die Gesteineigenschaften und (geologischen) Prozesse, die die Veränderlichkeit eines Gesteins bewirken.

Die Grenze zwischen veränderlich festen und dauerhaft festen Gesteinen

Veränderlich feste und dauerhaft feste Gesteine sind über geologische Prozesse miteinander verknüpft. So kann im Zuge der Metamorphose ein veränderlich festes Gestein dauerhaft fest werden, indem wasserempfindliche Tonnminerale umgewandelt werden. Im Gegenzug können Verwitterungsprozesse ein dauerhaft festes Gestein in ein veränderlich festes überführen (Bild 1).

Auch dauerhaft feste Gesteine werden in geologischen Zeiträumen zerstört. Daher ist der Übergang zwischen beiden Gesteinssubgruppen fließend und abhängig vom Betrachtungszeitraum. In der Ingenieurgeologie ist es sinnvoll, die Dauerhaftigkeit eines Gesteins auf die Nutzungsdauer eines Bauwerks zu beziehen, die in der Regel 100 Jahre beträgt.
Ein neuer Veränderlichkeitsversuch

Für die Grenzziehung zwischen den gering veränderlichen Gesteinen der VK 1 und den dauerhaft festen Gesteinen ist der modifizierte Trocknungs-Befeuhtungs-Versuch zu schwach, beide Gruppen bleiben intakt (maximal 5 % Massenerlust durch Auflockerungen bei der Prüfkörperbereitung). Daher werden solche Gesteine zusätzlich einem Kristallisationsversuch nach DIN 52113 unterzogen. Gesteine, die auch diesen Test ohne nennenswerten Massenverlust (< 10 %) überstehen, werden als dauerhaft fest klassifiziert (VK 0).

Der Veränderlichkeitsindex \(I_v \)
Zur Quantifizierung der Veränderlichkeit wurde von NICKMANN et al. (2006) der so genannte Veränderlichkeitsindex \(I_v \), eingeführt. Dieser ist definiert als:

\[
I_v = R_{1} + R_{III} + R_{c10} \quad \text{[1]}
\]

Mit:

\[
\begin{align*}
I_v & \quad \text{Veränderlichkeitsindex} \\
R_{1} & \quad \text{Masseanteil des grössten verbleibenden Stucks nach dem ersten und dem dritten Trocknungs-Befeuhtungs-Zyklus} \\
R_{III} & \quad \text{Masseanteil des grössten verbleibenden Stucks nach 10-zykлическим Kristallisations-
\text{} \\
R_{c10} & \quad \text{Masseanteil des grössten verbleibenden Stucks nach 10-zyklischem Kristallisationstest} \\
\end{align*}
\]

Bild 1. Definition der veränderlich festen und dauerhaft festen Gesteine und deren Beziehungen zueinander.

geotechnik 33 (2010) Nr. 4 321
Bild 3. Fließdiagramm zur Abgrenzung und Klassifizierung veränderlicher fester Gesteine.

Die Gefügefestigkeit als Parameter der Veränderlichkeit

Als Maß der Veränderlichkeit definierten NICKMANN et al. (2006) den neuen Parameter Gefügefestigkeit G. Dieser stellt einen Summenparameter dar, der die Zusammensetzung (Korngrößenverteilung, Gehalt an quellfähigen Tonmineralen, Zementation) und die Eigenschaften des Porenhorizonts beschreibt:

\[G = \text{UCS}^2 \cdot \frac{\text{KV}}{\text{PV}} \cdot Q \]

mit:

- G: Gefügefestigkeit [-]
- UCS: einaxiale Druckfestigkeit [MPa]
- KV: mittlerer Korndurchmesser [mm]
- PV: Porenanteil [-]
- Q: Quellpotenzial im Pulverquellversuch (THURO, 1993) [-]

Ursachen für den Verlust der Gefügefestigkeit

Betrachtet man die Parameter, durch die die Gefügefestigkeit gemäß Formel [3] definiert ist, zeigen sich folgende Zusammenhänge:

Dauerhaft feste Gesteine sind charakterisiert durch eine hohe bis sehr hohe einaxiale Druckfestigkeit, kombiniert mit einem geringen Porenvolumen. In diesen Gesteinen kann ein Wasserzutritt nur in geringem Maße und sehr langsam erfolgen. Die starken Bindungen werden hiervon nicht angegriffen.

Das Gesteinsgefüge als Ursache der Veränderlichkeit

Die Dünnenschliffe dieser Proben zeigen latente Schwächezonen, zum Beispiel mikroskopische Feinschichtung oder Tonlinien. Diese Inhomogenitäten reduzieren einerseits die Bindungsfestigkeit und führen zu einem schnelleren Versagen. Zudem tritt der Tonanteil konzentriert auf und kann so leichter vom zuströmenden Wasser angegriffen werden, wohingegen er in homogenen Mergelsteinen der VK0 gleichmäßig vertieft und somit vom Karbonat „plombiert“ ist. Das Beispiel im Bild 5 zeigt, dass allein durch Unterschiede im Gesteinsgefüge die einaxiale Druckfestigkeit nahezu halbiert wird und die Gefügefestigkeit G um eine Zehnerpotenz sinkt.

Der Einfluss der Verwitterung auf die Veränderlichkeit

Stump FORATEC AG
Bohr- und Messtechnik mit Köpfchen.

Kernbohrungen und Bohrungen bis 1'500 m
Brunnenbohrungen
Drainagebohrungen
MTF: Monitoring, Instrumentation and Technology
Dienstleistungen für die Geotechnik und das Bauwesen: www.stump.eu

EIN GUTER ZUG:
DRAINAGE OHNE STROM, DAFÜR MIT KNOW-HOW.

Entwässerung mit Saugdrainage, betrieben durch Wasserdruck und Höhendifferenz, umweltfreundlich und energieneutral. Bis zu 100 l/h bei max. Tiefe von 13 m. Klare Informationen: stump.eu
eine Verwitterungstufe V3 nach THURO (2007)) ein im frischen Zustand dauerhaft festes Gestein in ein veränderlich festes Gestein umwandeln kann.

Sehr eindrucksvoll wies LJUBESIC (2009) den Verlust der Dauerhaftigkeit durch Verwitterung in einem angewitterten Kalk (Lithothamienkalk) nach. Dieser zeigte in V2 makroskopisch keinerlei Verwitterungsanzeichen, im Dünnenschiff hingegen wurden erste Veränderungen (Bild 7) sichtbar: Während das unverwitterte Gestein lediglich kleine, runde, isolierte Poren (Durchmesser 0,2 mm) aufweist, weiten sich diese bei der Verwitterung auf, dehnen sich entlang der Korngrenzen aus und verschmelzen miteinander zu durchgehenden Hohlräumen. In Verwitterungstufe V3 erreichen sie bereits eine Größe von 0,5 mm.

Als zusätzlichen Prozess bewirkt die Verwitterung eine Oxidation der akzessorisch enthaltenen Eisenoxide und -hydroxide, die sich in einer zunehmenden Braunfärbung des Gesteins ausdrückt. Diese Veränderungen im Gesteinsgefüge wirken sich direkt auf die Gesteinsparameter aus (Bild 8):

- Die untersuchten frischen und unverwitterten Proben zeigten keine Reaktion im Veränderlichkeitsversuch und können mit einem Veränderlichkeitsindex $I_v = 290$ als dauerhaft feste Gesteine klassifiziert werden.

- In V2 verursachen die beginnenden Lösungsvorgänge im Zement eine Verringerung der Dichte, verknüpfen mit einer Zunahme des Porösen. Die Folgen sind eine Verringerung der Bindungsfestigkeit und ein Anstieg der Wasserdurchlässigkeit. Dadurch verliert das Gestein seine Dauerhaftigkeit, erkennbar am Abfall des Veränderlichkeitsindexes auf $I_v = 270$, der das Gestein als veränderlich festes Gestein der Klasse VK1 klassifiziert.

- In Verwitterungstufe V3 verstärken sich diese Prozesse und führen zu einer weiteren Schädigung des Gesteins. Ein $I_v = 248$ identifiziert das Gestein klar als veränderlich fest.

Entsprechende Prozesse können in sandigen Mergelgesteinen beobachtet werden, bei denen der Übergang der dauerhaft festen Gesteine in veränderlich feste Gesteine in der Verwitterungsstufe V3 erfolgt (LJUBESIC, 2009).

Schlussfolgerungen

Besonders in der oberflächennahen Zone, in der die meisten Bauwerke gegründet sind, greifen die Prozesse der Verwitterung und der Trennflächenbildung durch Druckentlastung häufig ins Gebirge ein. Daher muss damit gerechnet werden, dass hier auch ein Großteil der ursprünglich dauerhaft festen Gesteine geschwächt und bereits veränderlich fest ist.

keit auch über eine Berechnung des Faktors G aus den üblicherweise in jedem ingenieurgeologischen Untersuchungsprogramm bestimmten felsmechanischen Parametern bestimmt werden.

Quellenachweis

Softwarebausteine
Erd- und Grundbau

Laborversuchsauwertungen:
- Plattendruckversuch
- Proctorversuch
- Kornvertteilung
- Festigkeitsgrenze
- Dichtebestimmung
- Wassergehaltsbestimmung
- Kalilaugebestimmung
- Glimmlast
- K-Wertbestimmung
- Triaxialversuch
- Soholversuch
- Kompressionsversuch

Schichtverzeichnisse nach DIN 4022 allgemein
- Schichtenverzeichnisse nach DIN 4022 - Teil 1, 2 und Teil 3
- Darstellung von Längsschnitten
- ArcView- und AutoCAD-Anbindung
- Brunnen- bzw. Pegelausbauten
- Rammsondierungen
- Drucksondierungen
- Auswertung von Pumpversuchen
- Datenerfassung auf der Baustelle

Erdstatische Berechnungen:
- Standsicherheit von Böschungen
- DIN 4084, DIN 1054 (neu), EC7
- Gleitbreie
- gebrochene Gleitflächen (JANBU, Morgenstern)
- Blockgleitverfahren
- Verankerte Stützbauwerke
- Erddruckberechnung für Stützwände
- Baugrubenwände
- Setzungsberechnung
- Grundbruchsicherheit
- Gründungstopflehen
- Pfahlgründungen

Informationen und eine kostenlose Demo-CD erhalten Sie bei uns:

IDAT
Dieburger Straße 80 Tel.: 06151/7803-0
D-64267 Darmstadt Fax: 06151/7903-65
Email: info@idat.de Internet: www.idat.de

Für Windows NTF/2009/XP
mit neuesten DIN-Normen

geotechnik 33 (2010) Nr. 4
325